The presence of the slit in the body of the segment somehow perturbs the flow; however, the perturba-
tions on the shock front damp out approximately 10~fold within the distances ~ 3)x (A is the perturbation wave-
length) [3]. In our case A is on the order of the slit width, The minimum distance within which a velocity jump
occurs in the experiments described (for h/R = 0.9) is %y = 12 mm, which is much greater than the slit width
of ~ 1 mm, The presenceof theslit, ifitdoes exert an influence, will exert an influence which is more often
toward the dimiinution in the effect of cumulation,

In conclusion, let us note that more special forms of the hollow in the end face of the plug at the end of
the shock~tube channel can result in a still greater effect. In particular, the shape of a segment surface in
which collapse of the transverse wave would be realized in the form of a cylinder or of a cone with apex turned
toward the bottom of the segment can result in magnification of the effect,
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STREAM MODELS APPROXIMATING THE PROPERTIES OF
SUPERSONIC JET FLOWS

V. G, Dulov UDC 533.6,011:51,72

§1. Afree supersonic off-design jet is often the incoming stream or background for more complex phenom-
ena and processes (Fig. 1, where the dashes are contact discontinuities and the solid lines are shocks), Hence,
the simplicity of the analytical description of such jets is an important condition for the successful solution of
problems of a higher degree of difficulty than the jet itself, Let us examine the following most simple model of
a free jet: a one-dimensional supersonic stream moves in a channel with permeable walls, The escape velocity
through the holes in the walls equals the local speed of sound, By incre asing the area of the holes, we obtain
a one~dimensional stream in the limit in which the velocity along the normal to the cylindrical surface equals
the speed of sound. If the escape occurs into a medium with counterpressure, then a shock will appear at some
intermediate secton of the channel. Its position is easily determined and corresponds practically exactly with
the position of a central shock in an underexpanded jet, A simple improvement of this rough model permits
obtaining good qualitative results relative to all the fundamental supersonic jet parameters in the free expansion
domain (domain Iin Fig, 1), The flow in a channel with variable cross-sectional area and with permeable walls
is considered as the approximating stream, In the limit, the role of the permeable wall is played by one of the
characteristic surfaces, which converge with the nozzle edge whose shape is determined to fourth-order accu-
racy relative to the angle of stream divergence,

Let us form the mathematically presented considerations by using the following notation: x, y are the
coordinates in the plane of the axial stream section; u, v are velocity projections on the x, y axes; w is the
absolute value of the velocity; 3 is the slope of the velocity vector to the axis of symmetry; M is the Mach -
number; « is the Mach angle (sin @ = 1/M); k is the ratio of the specific heats; p is the pressure; p is the
density; h is the static heat content; hy, is the total heat content; S is the entropy; ¢ is the stream function; and
the equation of state is assumed given in the form h(p, 8). The parameters on the jet boundary are denoted by
the subscript H and on the nozzle exit by a. We consider all the quantities dimensionless: the coordinates are
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Fig, 1

referred to the radius of the nozzle exit section, the velocities to the magnitude of the maximum stationary
escape into a vacuum wy, = v2hy,, and the pressure to the stagnation pressure in the initial isentropic flow,
Under such conditions the Bernoulli equation is written as WA +h =1,

Let us perform the standard passage to the plane of the hodograph variables (u, v) in the equations of
motion, For problems with axial symmetry such an approach is ordinarily useless for investigations of exact
formulations and methods, but can turn out to be quite convenient for the construction of approximate solutions,
Let us go over to the variables &, n instead of u, v in equations written in the hodograph plane, by using the
relationships

f=uw=1—h=u"+v% n=10®= (1 h)sinf.

It follows from the Euler equation transformed to the variables mentioned that a characteristic flow function
¥(t, n) exists such that

@ = ¥*12hy — Y2V Em; gq = $2V E—m.

The Euler equation is satisfied identically for any function ¢. By using the continuity equation, expressions are
obtained for derivatives of the axial coordinate x with respect to the variables ¢, n:

— (& — ) [Pee -+ 7 (P + On)] Ppt+2E—m o
ze=Vh il s =V h L L} y 1.1
e =V 2V E— ) (9 1 Op) P2y IE— 1) (P + %) a1

where j = -hpp/hf). Eliminating x from (1.1) by cross differentiation, we obtain a second-order partial differ-
ential equation of Monge—Ampere type with the quasilinear part

2(& — )1 {9k — Peean) — {21 — E— 1) 71 (9 + 9n) — @} @y —
— 20 (2¢z + Pn) Pzq — [(2E — ) @y -+ 280z] @rz — 2Ej(9; + ¢)* — (1 — 17) @q(Pz - @q) = O. (1.2)

This equation is homogeneous in the desired function and all its members contain derivatives in the form of
products of two partial derivatives, where the coefficients of these products are polynomials of not higher than
the second degree in 7. Such a structure of the equation permits seeking the solution as a power series in the
variable 7. It should be expected that such an expansion is effective when the flow has primarily an axial di-
rection. Let us introduce the constant parameter £ which characterizes the order of the angle $ in the motion
domain under consideration, and let us consider € a small quantity, Evidently 5~ €2, Hence, we introduce the
deformed variable7 from the relationship 7 = €27 and we seek the solution in the form of the expansion

= 2 sth)h (Ev ﬁ)~
k=0

Equating the expression for identical powers of € in (1.2) fo zero, we obtain recursion relations for the coef-
ficients ¢, Since € takes no part in the subsequent considerations, let us set € =1, i.e., we return to the un-
deformed variable 7:

(28 — D(@wmn —U/M)own) = Fr; Fy =0 (k=0,1, 2...).
In the general case Fix—; can be expressed for k > 0 in terms of the function ¢, with smaller subscripts (n < k).

Let us consider 2¢j = 1, i.e,, M = 1, Then we find
Py = CTI2/2 + Da
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where C and D are arbitrary functions for the variable ¢ )
oy = [1/(25 — )] {[4ECC" — € + (5 + 2EHCC +
=3CP I3 + [(1 - 28)D" + 4D"In).

Here the primes denote derivatives with respect to £. In the approximation ¢ = ¢y + ep,, the flow is
described by the formulas

@ = [ (V 3a/BE) (28 — 1) Ca + (V FfE) (C + 45C") m;
Y12 = b0 0t [hp(28 — DI{AE(CCT — €7 + 4(1 + Ecc + (1.3)
+ 3jCIn* + 2(D’ + 2ED")}. :
Evidently, D = 0 if the flow contains the axis of symmetry, By using the solution in the form (1.3), we give a
mathematical description of the two above-mentioned free jet models,

One-Dimensional Model, It can be seen that the first members in the right sides of (1.3) agree exactly
with the formulas of the one~dimensional theory of stationary flows in channels with variable cross-sectional
area, Only the arbitrary function C (), related to the channel shape, is not usually introduced, For the pur-
poses of the problem under consideration, such a description is more convenient, Thus, let

e = [ (VI B8) (28 — 1) CdE 3412 = hyCon. (1.4)

The boundary conditions in the one-dimensional model are § = « on the characteristic surface y = 1 (o is the
Mach angle), i.e., n= (1—£)/M?, and, therefore, C* = M?/2h_(1—%). For an ideal gas with constant specific
heats M? = [2/(k—1)]t/(1 —£). Substituting C in the first of formulas (1.4) and integrating, we obtain

z = M{k—1) — [(k + D)/(k—4)] 1 {F—D) 2arctg(M}/{(k —1)72) ~ const. {1.5)

This formula can be used to describe the Mach number distribution along the jet axis although it yields an
asymptotically false result as M— w,

The shock in the simulating channel is set at that section where the critical pressure p; becomes equal
to the pressure in the surrounding medium py for escape into a medium with counterpressure, and if it is
assumed that the pressures in the provisional holes and in the channel are equalized, then the pressure Ps
behind the shock must be set equal to the pressure in the surrounding medium, If (1,5) is used, then the second
assumption yields a better agreement with experimental results, but if the exact law for the Mach number dis-
tribution along the jet axis is used (for instance, as obtained by the method of characteristics), then the first
assumption results in more exact values of the central shock coordinate x,. Hence, the x; are obtained some-
what less true. Under the condition p, = py, the Xg turn out to be greater than the experimental for exact M(x},
The most exact values of xg are obtained if the approximate formula (1,5) is used with the condition py = PH-
Mutual cancellation of the errors apparently occurs here, For gases with constant specific heats, we obtain
an equation for the Mach number M directly in front of the shock front from the adiabatic condition and the
formula for the pressure behind a normal shock

A= \ME—D :
. 971, o 1+ 75
&:[AJ’ Y S 1)( N ) L i=1 or 2,

- ]\'—ﬁi,\ !+1\‘;~1Mz
v ' s

The shock coordinate xg is determined by means of the M found,

Second-Approximation Model. Let us use the complete formulas (1,3) to describe this model. The imag-~
inary permeable surface bounding the channel is a characteristic, The normal velocity component along it
equals the local speed of sound. Let us use the equation of the characteristics in the form

dyldr = tg(§ —a);

o — cos2 o sinea -sind dx

(b~1)/2 Lsin?a cos{d—w) vy

(1.6)

Since o ~ &, then h ~ 22 and, therefore, h is a small quantity whose squares can be neglected, i.e,, in such a
formulation we deal with the hypersonic approximation. Substituting x, y in the form of {1.3) and retaining the
first two members of the expansion in h, we obtain the solution in parametric form aftertedious computations:
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Fig, 2
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where v = 1/(k—1); the subscript 0 denotes the initial parameters for the characteristic converging to the noz-
zle edge; the parameter g remains undetermined in the problem formulation under consideration and can be
used to satisfy an additional requirement. Formulas (1.7) describe the parameter field in the domain of free
jet expansion and are in good agreement with computations by the method of characteristics fora suitable selec-
tion of 3. The second of the formulas yields the distribution of h (or the Mach numbers) along the jet axis, In
contrast to (1.5) it has the correct asymptotic as h-~ 0 M — o).

§2. Stream models simulating the flow in the free jet-expansiondomain, independent of counterpressure
and the presence of an obstacle, were examined above, The flow in all the remaining sections of the jet is
essentially determined by the counterpressure and, in the case of restricted escape into domains adjoining an
obstacle, also by the position and shape of the obstacle, In particular, these factors influence the wave char-
acteristics in the neighborhood of the branch point of the shocks (the point C in Fig, 1). Later, it will be im~
portant to have sufficiently simple computational relationships characterizing the mutual influence of the pa-
rameters at the vertices of the angular zones converging at a triple point (Fig, 2).

The analysis of the triple shock configurations can be reduced to solving a sufficiently complex trans-
cendental equation in the general case [1]. Local utilization of such a procedure, especially as a boundary
condition, often is fraught with great difficulties. It is possible to construct an explicit solution in the neighbor-
hood of a triple point in a hypersonic approximation, Writing this solution analytically is simple if we limit
ourselves to a quadratic expansion in the two parameters 1/M and (k — 1), where M is the freestream Mach
number,

If three shock-front generators converge at one point, then one part of the freestream undergoes a single
compression on the shock front and the other passes through two shocks. The resultant effect of these actions
is characterized by identical magnifications of the pressures, When all the waves have a finite intensity, the
wave in the stream with single compression will be stronger near the normal shock, This is the wave N in
Fig, 2. The following notation are used in Fig, 2: S is the incident shock, R is the reflected shock, N is the

strong shock, and T is the contact discontinuity,
The conservation laws yield the following system of equations in the neighborhood of the triple point:

tgds = P(M, py/p); tg8, = P(M, p/D);

o 2.1
188, = P (My, po/py); M — R(M, pu/p) @)

where 6 is the angle of stream deflection at the shock front, and the subscripts 1, 2, and 3 correspond fo the
domain numbers in Fig, 2. The functions P and R can be considered known if the equation of state of the gas
is given, In the case of an ideal gas with constant specific heats these functions are
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282 \ 2
z—1 E+1 3
PM, 2= | %=1 1]
E i Y (2-2)
B4+ 2
Mﬁ(k__1z»j- 1)—-k—_'_—-1(22—1)
RM,z)= “FT
The following conditions are satisfied on the contact discontinuity:
P2 = pgi 83 — 8, + 6, = 0. ‘ (2.3)

Since one of the shocks is ordinarily strong, and almost normal, then a logical simplification of the
computational relations is linearization with respect to a triple configuration with one normal shock {2, 3],

If the shock N is normal, then the parameters in domain 3 are determined independently: 65 = 0, pg/p is
a known function of M and k, when the equation of state of the gas is given, For an ideal gas

palp = [2k/(k + DIM? — (B — 1M/ (& — 1)
In this case condition {2.3) can be rewritten as follows:
—8; + 8, = 0; (2.4)
pi/p= (P3/P)py/Ps. (2.5)

Substituting the appropriate expressions for the angles of stream deflection on the shock fronts into (2.4),
we obtain

aretgP(M, p,/py — arctgP(My, p./p,) = 0.
In combination with the last relationship in the system (2.1) and condition (2.5), this expression yields a tran-

scendentalequation forthe pressure p; between the fronts of the bifurcated shocks S and R in the general case
{see Fig, 2). For an ideal gas with constant specific heats the equation will be algebraic and in the form

i K, (M, %) (—gz.)z 0. (2.6)

n=0

For high numbers M its approximate solution can be found as a polynomial in powers of 1/M:
p/p: = a - B/M 4 /M2, (2.7)

Retaining quantities up to second order in the expansions of the coefficients ky,, we obtain after simple manip~
ulations

0 (a,, - c—-) (—f’—‘-)n ~0, 2.8)

iba-
2

where the coefficients a, and cp depend only on the ratio of the specific heats, Equation (2.8) is obtained after
reduction of the intermediate relation by (py/ pz)z, which eliminatés the second root py/p, = 0 of (2.6). Substitu-
ting (2.7) into (2.8), we again discard higher-order terms and collect the rest in powers of 1/M. Equating the
coefficients of powers of 1/M to zero in order to find the «, b, ¢ in (2.7), we find the following relationships:

&
. 7
S*, Z‘J Cnd

— - =

- @b =0; b=20, o= e

n={ Z a gt

n

n=i

For the sake of simplicity, we seek the finite relationships ¢ and c.in the form of power-law expansions in the
quantity (k= 1) and retain the first three members. Consequently, we find
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a=025k—1) — 0.5k — 1)% ¢ =[4 + 2(k — 1) —7(k — 1)21/2(k — 1). 2.9

We assume that the angle 6, in the jet triple shock configuration is small (the shock N is almost normal)
and the flow parameters between the shock fronts differ slightly from the corresponding parameters in a
configuration with one normal shock; then

P1 = pp + Apy; P2 = P + Apy; My = My, + AM;; )
8s = 8; -+ ABy; 8, = 8y -+ Ab;{8ay = 83 = By).

Let us introduce the following notation for the derivatives of the function (2.2):

P ke Pz+1—M3)
Pl(NI,z)Sa(Mg} :;C':—i(i_l szmﬂ) ok “2__”.__.1:—1)‘
e (m R
ap t 1 0.5 0.5 .
P2(M:Z):-5Z—=P z—-at‘—‘"'ll#kM“"—zm E—1 2k . E—1 |* (2.10)
\ hrFL R TR
o2 \|Et1
R,(M,z) = 28 (o ) [+ 2]
2 3 Il vl 2
[ 32(z+k+‘i)
=1

We find to first-order accuracy the following from the second condition in (2,3):
Apy/p = v8, (2.11)

where y is a function of M and k determined from an analysis of a triple configuration with one normal com-
pression shock:

— [eos? (M, B 3 ol Pz P2 (2.12)
¥ kcos % [P“ (M’ » ) (MM’ )Rﬁ (M ) Py (M“” Plo)(Plo) 7 } ;
Py, Py, Ry are calculated by means of (2.10) by substituting the appropriate M and z. It is possible to proceed
substantially toward lesser values of M if the linear term in 1/M is retained in (2,7) and the coefficients q, b,
and ¢ are determined by sampling by approximating the results of exact computations. The following depen-~
dences are recommended:

a = —0.0175 - 0,3793(k — 1) — 0.1727(k — 1)%;
b = 1.2382—1.2579(k — 1) = 0.3813(k — 1)%;
¢ = —0,4044 — 0.2830(k — 1) = 0.0324(k — 1)e.

If py/p, is determined by (2.7), then a simple dependence can be obtained for v, After substituting the
expressions for the quantities in the right side of (2.12), we carry out an expansion in 1/M and retain the first
three terms. Consequently, we obtain a relationship analogous to (2.7) for the quantity v/M?% It hence follows
that

9= A -~ BM + M,

where A, B, C depend only on k., These coefficients are approximated well by

A = —1.7901 = 13.2844(k — 1) — 13.2702(k — 1)%
B = 1.6318 — 10.3203(k — 1) = 9.808%(k — 1)3;
€ = 04315 + 2.3768(k — 1) — 1.6327(k — 1)2,

The results of computing an arbitrary triple shock configuration by means of the approximate method
elucidated agree satisfactorily with the results of an exact computation for values of &, up to 10-12°, The
discrepancy in the relative pressures is léss than 8% for M> 2,

Application of the appx'oximaté dependences presented reduces the computation of the parameters in
triple shock configurations to the execution of elementary calculations,
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§3. Phenomena in the neighborhood of the jet boundary, near the hanging shock front on both sides, and
in the shock bifurcation zone are of a quite definite nonuniform character. The following method, approved by
numerous comparisons with the results of computations and the data of experiments in a broad range of initial
parameters [4], can be recommended for an approximate analytical description of the flows in these domains,

Let us agsume that an n-parameter family of curves £(x, y, a1, @3, .-+, an) =0 is known such that a
curve of this family can be selected for any escape mode, which approximates the jet boundary well enough,
i.e., the question of finding the boundary reduces to determining n values of the parameters a; for specific
escape conditions, If the jet boundary is simulated by a solid wall to be graphic, then the hanging shock can
be treated as the bow wave originating in the supersonic flow around a concave surface, The higher the Mach
number in this stream, the closer does such a wave approach the streamlined surface, On this basis, certain
authors used the limit hypersonic approximation: it was assumed that the hanging shock coincides with the
jet boundary, For finite, but large Mach numbers shead of the hanging shock, its generator differs slightly in
shape from the line mapping the boundary and can be obtained geometrically from it by a relatively small de-
formation, Such a deformation can approximately be carried out analytically because of a change in the param-
eters in the structural dependence governing the shape of the jet boundary, i,e., the problem of defining the
shape of the hanging shock reduces to selecting a specific curve from the same n-parameter family £ (%, y, by,
bgs « o o» by} = 0. Here the free parameters of the family are denoted by b; (i=1,2, ... , n) in orderto sepa-
rate the second selection procedure from the first, The number 2n equals the number of conditions which are
successfully formulated sufficiently simply for the boundaries and the hanging shock,

Let us turn to possible formulations of these conditions. Part of them are successfully formulated exactly
and simply; the rest yield only to a more or less approximate description, An approximate method to find the
position of the central compression shock was considered above., There existmany other approximate and semi-
empirical methods of determining this quantity with good accuracy. Below we shall consider the coordinate
Xg lnown. The diameter of the central shock (the coordinate y g is considerably more difficult to subject to
calculation, In substance, there are no reliable methods of finding this quantity, Hence, we shall henceforth
consider y unknown together with the parameters governing the shock boundary and arc. As yet we assume
that all the flow parameters are computed successfully in the neighborhood of the shock-front branch point,

The hanging shock is generated at interior points of the stream in the form of a zero intensity wave as
a result of the intersection of characteristics reflected from the boundary. On a certain section it can be
considered to coincide with the envelope of the characteristics mentioned, where the first reflected character-
istics already intersect, since the initial radius of curvature of the boundary differs from zero [5]. Starting
from these considerations, the point of hanging shock generation and its initial slope can be found, Therefore,
there is a possibility of forming the following five evident conditions which the equations of the boundary and
shock generators should satisfy: 1) the boundary passes through the point (0.1); 2) its slope at this point is
S5 3) the slope of the shock is known at x = xg; 4) the coordinates of the point of hanging shock generation
(Xg» Yg) can be calculated; 5) the initial slope of the hanging shock is to be determined,

Finally, by using the integral mass conservation law for the section in which the central shock is located
(see Fig, 1), the radius of the boundary in this section (the coordinate y;) can be determined under certain
simplifying assumptions. This result is used as condition 6.

Further, two approximate conditions can be obtained for an examination of the flow in the neighborhood of
the point M (Fig, 3), where the tangent to the hanging shock generator is parallel to the axis of symmetry., Let
us consider the shock to be so weak on the section OM that its front is practically indistinguishable from the
envelope of the family of characteristics reflected from the boundary, which are themselves rectilinear, Then
the characteristic arriving at the point M from the boundary will coincide with the tangent to the hanging shock
at this point and is therefore parallel to the axis of symmetry. Condition 7 hence follows: the ordinate of the
point M (yy,) equals the ordinate of that point on the boundary in which the slope of the tangent equals the known
Mach angle ay. Finally, we have condition 8: the mass flow rates of gas through the segments M;M and
MM, are equal (see Fig. 3), The discharge through the section MM, can be determined in the same approxima-
tion as through the section CMg, and the distribution of all the parameters along the rectilinear characteristic
M;M is known, in particular, the mass flow rate can be calculated.

Let us examine two versions of solving the problem: taking account of conditions 7 and 8 and without
taking these conditions into account. In the first case, a four-parameter family of curves can be selected to
approximate the boundary and the hanging shock (n = 4), and in the second case, a three-parameter family
n=3),
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Let us proceed to a specific realization of the scheme designated. Writing the first three equations is
evident, Let us examine the formulated conditions in the above-mentioned order by starting with the fourth,

Condition 4. The coordinates (x;, y,) of the point can be expressed in terms of the radius of curvature
Ry of the initial element of the jet boundary under the assumption that the characteristics are practically rec-
tilinear up to the point of intersection (Fig, 4).

A simple approximate formula for Ry can be obtained from the equation of motion in projections on the
normal fo the streamline with the continuity equation taken into account:

ow?/R = —dp.dn, 08/0n —- (1/ow)dow/ds = —sind/y,

where R is the local radius of curvature; s and n are the distance along the streamline and its normal, Since
pw = const along the boundary, we obtain from the last equations
ow? R = (sind,/y)op/ad.
The derivative 9p/84# is evaluated along the normal to the boundary. A change in pressure in the ele-

mentary compression wave reflected from the boundary is calculated approximately by means of the plane
theory of small disturbances. The flow in the neighborhood of the boundary is irrotational; hence

dp = (ow¥/} AT — 1)do.
Therefore,

Y
]/ My—1 o octgay

Ry =

3.1)

sing,  sing,’

where oH is the Mach angle; gy is the initial slope of the boundary generator to the jet axis, The approximate
formula (3.1) yields completely satisfactory agreement with the results of exact calculations [5]. According
to (3.1) and Fig. 4, the coordinates of the point of hanging shock generation are determined by the formulas

zg = (cosoy/sindy)eos(Oy — aa); Yo = 1 - (cosoy/sindy)sin(d,—ay).

Condition 5. The parameters in the neighborhood of the triple point possess great sensitivity to the
change in the magnitude of the initial slope g, of the hanging shock to the jet axis, The arc of the hanging shock
has considerable extent; hence, small errors in determining the angle §; can be the source of considerable
errors at the end of this are, Let us calculate the magnitude of the increment in the characteristic angle (3 —a)
during displacement along the last characteristic which converges with the sharp nozzle edge. In the neighbor-
hood of this edge, the derivatives of the gasdynamic quantities along the first family characteristic in the
rarefaction~-wave domain are very much greater in abhsolute value than the same quantities in the direction of
the second family characteristics., Hence, the compatibility relationship along the first family characteristic
is satisfied approximately in all directions in the same form as for plane flows:

ds L {cos?a/[(k — 1)/2 + sin’al}da = 0. (3.2)

In particular, this relationship is valid along the initial element of the boundary characteristic on which
the exact relationship for the second family characteristics is satisfied:
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de — {cos?a/l(k — 1)/2 + sin%a]}do — sinasindd] = 0, 3.3)
where di is the element of displacement along the characteristic mentioned. It follows from (3.2) and (3.3)
that

d(® — a)/dl = [(k + 1)/4]sing-sinG/cos®a.
This latter formula affords a possibility of introducing a linear correction to the magnitude of the angle
By = Oy — 0x - [dO — a)/dld = 8y — ay 4 [{(E + 1)/4]tgas.

The computations presented showed that taking account of such a correction is one of the fundamental
hypotheses for raising the accuracy of determining the shock-configuration parameters in a jet,

Condition 6. The mass flow rate through an annular section CM; (see Fig, 3) is

Ys

5

Q = 2z | puydy, (3.4)

Ug
where u is the axial velocity componert. There are no sharp peaks of the gasdynamic parameters between the
boundaries and the hanging shock, and all the quantities vary sufficiently smoothly across the domain, The
mass flux density pu in the section CM; is approximated by a linear function in y, We note the parameters at
the point C between the bifurcated shock fronts by the subscript 1, Under such assumptions

pu == pyty - [oslty — 001)/(¥s — ¥s) Iy — yy)-

After evaluating the integral in (3.4), the result is reduced to the form Q =27[p;u(y; +¥g) + (PHUs ~ P1y) -
s * 2y3)/31(v;—¥g). The discharge Q equals the discharge in the jet after subtraction of the gas discharge
passing through the central shock., Since the section under consideration is usually located near the maximum
jet section, the slope of the boundary to the jet axis at the point M, is a small quantity and at least for ug it

is possible to set uy = WHCOS Sy ~ Wy.

Conditions 7 and 8, Itis necessary to set y = const =y, and, therefore, § = @, along the second family
characteristic MyM, where o is the Mach angle (sin @ = IYM}, Selecting the Mach number M as the argument,
we obtain from (1.6)

dz/dM = {2 £ [(k — 3)/2IM2}/{l = [(k — 1)/2IM2} = 1/K.

Further calculations can be performed exactly; however, they are unjustifiedly tedious. The approximations
K = const = Ry; pa =~ 04,1l — (dlnpa/dM)s(M — My)];
M — M, =~ Rylr — z,) )

along the characteristic MyM (¢ is the speed of sound) and

o == oultyll — (dlnpuidy)uly — ya)]

along the line MM, can be used without substantial loss in accuracy. Substituting these expressions in the equal-
. ity of the discharges (v=a on MIM), we obtain an equation connecting the coordinates of the points on the two
desired curves after simple manipulations:
211+ (din] “pa/dM)uR y(zm — ) om — @) =
:l\ln(yﬁ - ym) [.l/'l — Ym — (dlnpw/dh{[)ﬂﬂin(xm - ‘rl)(yi ’—2yrzz)/3]-

Let us make the following recommendations relative to the selection of the parametric families of the curves
approximating the boundary and the arc of the hanging shock.

In the case of the four-parameter problem, the fact that the boundary is often successfully mapped com~
pletely satisfactorily by the arc of a circle, i.e., the curvature along the boundary should be a slightly varying
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function ofthe arc lengthorcoordinate,say y, can be taken as a priori information. In a first approximation
this function can be represented as a linear dependence gy —a5y. On the other hand, for relatively small angles
we consider the curvature approximately equal to dzy/ dx*., We then obtain the equation

d*y/dz® = a; — ady,

whose general integral

y = agsin(a,x + a;) + aqfal (3.5)

yields a four-parameter representation of the boundary (ay, ay, a3, @y are arbitrary parameters). The curves

of the family (3.5) can approximate the boundary and the shock well in practically any escape mode. However,
substituting the function (3.5) into the eight conditions formulated above resulfs in a quite complicated system
of transcendental equations, For fast approximate computations it is best to use the three-parameter model,

In the case of the three-parameter problem the structural formula for the family of curves is obtained at once
from the solution in a near-axis approximation in the form of (1.3), from which there follows that all the iso-

bars and particularly the boundary are described by an equation for second-order curves in the form

y=V a, +a, x + ay?, : (3.6)
i.e., the boundary and wave front are approximated by arcs of ellipses in this approximation.

Let us especially consider the question of determining the radius of the central shock y,. For the sake
of simplicity, let us examine the final result in the case of a three-parameter approximation of the form (3.6).

A tendency to stream equilibration in the direction of the jet axis always existsinajet flow, The slopes
of the velocity vector to the jet axis already become small after the first system of shocks, A contact discon-
tinuity converging with the contour of the central shock, which can be considered a normal compression shock
in a first approximation, also possesses this property. Then the initial slope of the contact discontinuity equals
zero, and the stream through the shock front can be considered one-dimensional,

Let us represent the following as the second approximation: the velocity vector w ahead of the triple
point C forms a small angle £ with the axis of symmetry, the angle of the incident shock with this vector varies
by a small quantity Aw, the central shock curves, and the initial element of the contact discontinuity remains
parallel to the axis, Therefore, in a second approximation € — 8y + 6, = 0, where §; and &, are the angles of
stream rotation on the incident and reflected shocks, respectively.

Let us use the formula (2.11) obtained above. Then
Ap/Jp =yMe, Aw = (k L 1)p(M)e/2kM%sin20. . (3.7)

Let us assume the flow through the central shock contour to be one-dimensional in a stream tube passing
through the central shock contour. Hence

& =~ dy/dz = (dlny/dM)(dM/dz)y = [BM)/m(M)]y, (3.8)
where

BM) = [q(M)/221(M)]dlng(M)/dM;
nM) =1 — (& +1)y(M)/2kM?sin20.

Here q(M) is a tabulated gasdynanxic discharge function, and x(M) is a function characterizing the Mach number
distribution along the jet axis, On the basis of (3.7) and (3.8)

0s =a A0 = o — Py .
Substituting the value of 4g in the conditions 3-5, weifind the radius of the central compression shock

| — (@ —z)tgo}. (3.9

1 - £s —zy \—1 . T5 — 2o\
Ys = T(l fﬁTsosTgo“') {[(xs —zp)* tg% o + 4y, (1 —B _:652_53>(y0 + (s — 7,) 12 6,)
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Numerous computations were performed of the shock configurations for underexpanded jets in a broad
range of initial parameter values. Results of the computations were compared with published results of nu-
merical computations and experimental measurements, Presented in Fig, 5is a comparison between a com-
putation using (3.9) and the results of experiments [5] (the solid and dashed lines, respectively) for M, = 1.5,
k=14,

Analogous results have been obtained for other values of the initial parameters:

1M, <5, 2< pofps < 100.

An estimate made of the influence of the possible assumptions on the magnitude of the radius of the cen-
tral shock showed that replacing it by a normal shock (3 = 0) induces an error on the order of 20-30% in yg.
Displacement of the point of hanging shock generation to the nozzle edge changes the value of yg by 30-40%.
But the greatest error is associated with determining the initial slope of the hanging shock: equating 00 to the
angle Sy~ @H changes yg by 50-70%. The errors mentioned can hence appear in one direction, i,e,, do not
cancel each other,

§4., TFor the sake of completeness of analysis of the question about a free jet, let us examine the possible
method of describing the flow in a gas jet passing through a central compression shock, particularly the deter-
mination of the shape of the contact discontinuity.

Let a certain stream tube with the cross-sectional area F; ~ const (Fig. 6) exist such that the flow on its
boundary is already practically independent of the shape of the contact discontinuity, Let us consider the gen-
erators of this surface rectilinear and parallel to the axis of jet symmetry, Let us partition the flow in the
stream tube into two parts: a one~dimensional flow within the stream tube which rests on the central shock
contour (the domain II in Fig. 6) and an outer supersonic flow in the annular domain I, where the one-dimension-
al description of the motion turns out to be inadequate, If f is the cross-sectional area of domain II, then a
change in pressure along the contact discontinuity from this domain is written as

dp, = (dp/df)df.

The change in pressure from the supersonic domain side I is determined by two causes: first, for each
rotation of the boundary through a small angle dg elementary compression or rarefaction waves stand off from
the boundary in conformity with the direction of rotation; secondly, effective broadening or compression of the
whole stream occurs because of the change in cross~sectional area of the annular stream tube, These effects
can appear in one or the opposite directions. The resultant pressure change from the outer flow is represent-
able as

dp, == (0p/dF)dF - (dp/03)ds.
The pressure continuity condition on the contact surface dpy = dp, can be written as
(dp/dfYdf = (0p/dF)dF —+ (dp/58)do. (4.1}
According to one~-dimensional theory

dp 1 kp)3 o 1 kpMy o

df T T jai—1 OF FmMi—1

According to the theory of simple waves
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Evidently,
f=ay F=Fy —f.

After the substifutions mentioned, {4.1) becomes

2 _ 9 .
] 2n VM2 M5 2 .
dﬁ+(F°—j]/M§—1 + =T Y dy =0. (4.2)

The radius of the stream tube II is a relatively slightly varying quantity, Hence, the first member in the
parentheses is a finite, almost constant value. The second member can grow without limit as M, —1, but this
member is much less than the first in sections where M, is considerably less than one, since M§/M} «1,
Therefore, the contribution of the second member must be taken into account only near the critical section,
i.e., in the second member M, can be replaced by its asymptotic expression as M, — 1, as follows from the
differential relationship between the section area and the Mach number in a one-dimensional stream:

af__ Mi—t 4.3)

! Mz(i—-l,‘_.;_i.Mg)

We hence obtain as My — 1

(y—y)ly = [2/(k + 1))(M, —1)?,

where y, is the radius of the critical section,

k—1 (R+1)/4(h—1)
2 h
(M
ys. - k+,1 ?

2

and Mg is the Mach number behind the central shock. Let us introduce the notation 5 = (y—y*)/y*. Then My~
1 F /1K +1)/2)17 (the minus sign should be taken for the subsonic section and the plus sign for the supersonic
section of the jet), According to the above, wecan put M;—1 ~+TK + 1)/2]7 in {4.2) in the whole subsonic sec-
tion, After integrating with the condition g= 0 for =0 (in the critical section), we obtain

M2 —1 - _
ﬂzz(VMzs lﬁ_L_ﬂL)y*Vﬁ : (4.4)

VEF1ys Mis Fo—fVMg‘s_i

(the slightly varying quantities in the parentheses are replaced by their values in the initial section), It follows
from (4.4) that g = 0 (except the minimum section) and in the section where

2y 2 Mgs 1
V?l Vk 1 :rtys M%s ( [ f)

Here the maximum of the jet cross-sectional area evidently holds, However, it is still impossible to determine
the radius of this section by means of this last formula, since F; is an unknown constant, To determine it, it is
necessary to know the initial value of the slope of the contact discontinuity gg, in (4.4) and above g = 0. This
quantity can be determined more exactly in the framework of the reasoning used. Let us clarify this possibility
without going into detail, since ¢ for a free jet is henceforth of no interest.

The central shock in a free jet is a curvilinear surface turned convexly downstream (Fig, 7). The ten-
dency for equilibration of the velocity directions along the axis of symmetry in a jet has already been noted.
If it is assumed that the equilibration is achieved completely behind the central shock, then the flow in II will
be an isobaric vortex stream parallel to the axis. The angle of stream rotation on the wave front at each point
of the front is then equal to the slope of the veloeity vector 2 to the axis ahead of the front, i.e.,
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according to the known formula for shocks (2.1). Here the tangent is replaced by the argument; p, is the con-
stant pressure behind the front; p is the variable pressure in the nonuniform stream ahead of the front, which
is a known function of M (isentropic coupling), i.e., .3 = @&M) because of (.5), where @ is a known function,
The flow ahead of the shock front will be examined in a one-dimensional approximation, Then

8 = dy/dz = (y/2)(d In f/dM)dM/dz.

In the one-dimensional stream d In _f/dM is a known function of M, i.e,, (1/2)dLnf/dM = ¢(M). From the last
fwo equations

dM/dz = O(M)/yg(M). (4.6)

Let 9y/0x be the derivative along the wave front and « the slope of the front to the velocity vector ahead of
the front; then

Ay/dx = tg{o —B8) = &(M),
where (M) is a known function. Hence and from (4.5)
8 1n y/oM = e(M)g(M)/0(M).

This latter equality determines y (M), and M(x) is found from (4.1), i.e., the Mach number distribution
law before the wave front, Such a distribution differs from that given in the incoming jet. Hence, complete
equilibration of the velocity directions is impossible and is achieved just as much as the existing distribution
M(x) in the jet ahead of the shock admits. Near the jet axis g ~ y. Taking the dependence .4 = ay behind the
shock front will be the simplest refinement of the computational scheme (¢ is a constant), If it is considered
that ¢ = 0, @ = ay for all the previous assumptions, then ¢ — ay must be written in place of ¢ and the result
of integrating the relation 14.6) will contain the parameter a: M =M(X, a). Nowa mustbe selected such thatthe depen-
dence M (x. @) will approximate the given dependence optimally in some sense, This defines J4g=ayg. All the oper-
ations mentioned are realized simply, since the range of variation of the Mach numbers under consideration
is quite small and it is possible to limit oneself to the first terms of the expansion everywhere,

Let us consider model constructions for restricted jets interacting with obstacles by considering the ob-
stacle such that it does not spoil the axial symmetry.

§5. As before, the problem of determining the position of the central compression shock remains one of
the fundamental questions. Now the coordinate xg depends not only on the counterpressure, but primarily on
the position and shape of the obstacle, There are still no convenient and simple methods of determining these
quantities, Experimental investigations are not subject to sufficient generalization, and numerical methods
are fraught with major difficulties in their realization.

Presented in Fig, 8 is a stream scheme in the case of an underexpanded jet (pa/pH > 1), impinging on an
obstacle, where OC is the hanging, CB the reflected, and CC the central compression shock; CE is the contact
discontinuity; and ABD is the jet boundary; the solid lines are the shock fronts and the dashes denote contact
discontinuities, Up to the last system of compression shocks (CC and CB) the stream in front of the face side
of the obstacle 2 coincides with the flow in a free jet with the same parameters in the nozzle exit section 1,
The solution for this part of the stream is assumed known,
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" The stream behind the system of compression shocks CC and CB can be separated into two domains:
Il is the flow domain behind the central compression shock between the contact discontinuity and the body
surface, and I the domain of the peripheral stream external with respect to II,

If the shape of the contact discontinuity has been found, then the computation of the flow in the peripheral
stream domain reduces to the problem of the nonuniform flow around a certain body with one attached shock,

An approximate method is proposed, based on the linear approximation of the velocity dependence on the
pressure along a streamline, to determine the flow in domain II, Such an approach has been used in external
flow problems {8, 7].

The linear approximation permits infegration of the system of gasdynamic equations for an inviscid non-
heat-conducting gas. A simple connection is hence obtained between the kinematic flow parameters (kinematic
integral), which affords the possibility of finding the position of the triple point and the shape of the contact
discontinuity without solving the problem as a whole {8].

The pressure dependence of the velocity is written as
w= Ap + B,

where A and B are functions of just one variable, the stream function ¢, which is determined by the relation-
ship .

dyp/pw = y cos Ody — y sin Odz. (5.1)

By virtue of the approximation used, pw is also a function of just the one variable y; hence, we have a
total differential of some function in the left side of (5.1). The condition that a total differential is on the right
is written as

Ny ecs 9)/0zx + d(y sin §)0y = 0.

Hence

z = ysin © In tg(8/2)+ /(y sin 9), ©(5.2)

where £(y sin ) is an arbitrary function of its argument, determined from the condition of impermeability on
the body surface. For fundamental obstacle shapes the expression for it is written explicitly.

The streamline equation ean be integrated in the presence of the kinematic integral (5.2). The result is
obtained in finite form, Therefore, the equation of the line of the contact discontinuity can be determined as a
streamline converging with the contour of the central compression shock,

Since the position of the central compression shock is unknown in advance, it is considered that the triple
point can occupy any position on the hanging compression shock, Knowledge of the flow field in a free jet with
the same parameters in the nozzle exit section as in the jet impinging on the ohstacle yields the equation of an
arc of the hanging shock and the stream parameters in front of it, All the stream parameters behind the triple
point, including even the slope of the velocity vector to the axis of symmetry, can be determined for each point
of this shock by means of the relations for the triple shock configuration, Therefore, a dependence of this
angle on the axial coordinate ¢ = @ (x) is obtained from a computation of the free jet,

For a given obstacle position, the slope of the velocity vector behind the triple point can be found for all
points of the hanging shock and from a computation of domain II. Along the contour of a body of given shape,
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the dependence ¢ = ®(y), which determines the form of the arbitrary function f(y sin g), is considered known,
For each point corresponding to the equation of the hanging shock, ¢ is found by means of the relationship (5.2),
i.e., the same dependence of the siope of the velocity vector behind the triple point is determined, but from the
solution taking account of the condition on the body ¢ = ®;(x). The position of the triple point is determined by
the intersection between the curves 2 = ®(%); 4 = 8,(x).

Results of a computation for one of the specific cases when the parameters in the nozzle exit section are
constant and the spacing between the nozzle and the obstacle taken on a number of values are presented as an
illustration in Fig, 9. There is one curve of the dependence ¢ = @;(x) and a set of curves of the dependence
& = &y (x), where each curve of this set corresponds to a definite position of the obstacle x = xg,. The position
of the triple point for each value of x4} is found from the intersection of the appropriate curve ¢ = @, (x) with
the curve 4 = ®;(x).

Positions of the central shock (the triple point) were computed according to the scheme given above for
the following range of the governing parameters: pa/pH =3 —12; Ma =1-3; ¢, = 0%, k=1.4. The obstacles
were taken as infinite planes and cylinders with a flat end face, The spacing between the nozzle and the obsta-
cle did not exceed the length of the initial gasdynamic section of the jet, The stream parameters in a domain
which agrees with the flow in a free jet and the equation of an arc of the incident shock were computed by the
method elucidated above,

A comparison between the computed data in relative coordinates and the experimental data for jet inflow
on a flat infinite obstacle is given in Fig, 10 (values of M: 1—1,0; 2,3,4 —1.5; 5, 6 — 2.0; 7, 8 —3,0; values of
pa/pH: 1,4,6—12;2,8-5; 3, 5, 7—8). The distances between the nozzle and obstacle and the central com~
pression shock xg are referred to the distance between the nozzle and the central shock x§ in a free jet. The
free jet parameters were taken equal to the parameters of a jet impinging on the obstacle for each point, The
experimental data are represented in Fig, 10 as the curve 9 of a generalized dependence [9], valid in the range
of governing parameters under consideration (the solid line). Agreement between the computed and experiment-
al data can be considered satisfactory.

§6. Stream tubes in the neighborhood of the axis of symmetry of the impinging jet undergo sharp changes
in their configuration ahead of the obstacle, A relatively small region of essentially spatial flow can be simu-
lated by a discontinuity in the stream parameters, among which is the cross-sectional area of the tube (Fig, 11).
The influence of the obstacle on the fundamental jet flow parameters is studied by using the general conserva-
tion laws written down for a conditional discontinuity [10]. In particular, such an approach permits establish-
ment of a connection between the position of the Mach disk in a system of bifurcated shocks and the force of jet
action on the obstacle, Approbation of the approach proposed is a confirmation of this connection by means of
quantities easily measured in an experiment, as has been done for available data.

Let us write the general conservation laws for the conditional discontinuity:

o Fy = pws(Fo — Bop

P (Fy — Fyp) — puwiFy = pyFy— py(Fy — Fp) — R (6.1)
w? , a? ug , a3

where F is the cross-sectional area of the stream tube (Fob‘ is the area of the obstacle). The subscripts 1 and
2 refer to the appropriate checking sections 1—1 and 2—2 in Fig, 11, Let us use the notation

R =R —R",
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where R is the reaction of the obstacle, and R" is the axial component of the force acting on the contact dis~
continuity surface between sections 1 and 2. Let us introduce the dimensionless coefficient g for the force R':

R = ppwiF,. (6.2)
Taking account of (6.2), the equation

k1
=M M} (aME41)?

s —1—’5—;—11»1% My [pME(1—B)+1]%

is found from the system (6.1); its solution has the form

k1) l/ [kmfu—ﬁ)+1]2_2(k+1)M§(1+"’%1M§)

Mio1

kl/ [P —B)+1]2—2(k+1) 1\1%(1+k7_1M%)+1+kM%(1—-5)

The sign in front of the radical is selected such that for wy — 0; wy, — 0.

The maximum value of the Mach number (M, = 1) is achieved when the radicand equals zero. Hence, for
the limit mode

(1—m})?

p= : :
k;\{f[1+kM§+Ml ‘/2 (k+1)(1+1—”-—;—131§)

where the sign in front of the radical is selected from the condition g = 0 (the force is R' = 0 and is directed
along the jet axis),

Let us separate the stream in front of the obstacle into exterior I and interior II with respect to the con-
tact discontinuity CE which converges with the contour of the central shock (see Fig. 11), If the pressure from
the exterior stream side p can be considered a slightly varying quantity, then

R" =~ p(F, — F).

The shape of the contact discontinuity is such that p = p, (p; is the pressure in the interior stream). In esti-
mates, p was taken equal to the lower limit of p,.

From the conservation laws there follows
k1
14+ ~—5—M3
p M ~ T3 M
=i ]/—————-k_i - (6.3)
14— M}

If irreversible losses between the sections 1—1 and 2—2 are neglected, then

E—1 o\ W)
2o (i_f2_M_2) - (6.4)

where f = (F, —Fob)/ Fy.

F—1
1+ —5— M
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From (6.3) and (6.4) we find

Bt o —GHOPR—)
s M V45— My
T=x, | %=1 :

1+—M§

For My =1

o b g \(BH12(R—1) k— —(h-1)/2k~1)
o

Finally,

R=pilFy(f— 1) = F 1+ BkpMiF,.

The flow to the central shock agrees with the flow in a free jet, Hence, to determine the parameters be-
hind the central shock it is sufficient just to know its position,

Let us examine the results of computations in which the values of the central shock coordinate x4 was
taken from the experimental data [11], The flow behind the shock was considered parallel to the axis (Fy = Fg)
and the stream parameters in the section 1—~1 were assumed equal to the parameters on the jet axis behind a
normal compression shock., The results of the computations were compared with data obtained by integration
over available experimental points characterizing the pressure distribution on the obstacle surface,

Results are presented in Fig, 12 in the stationary flow case; the curves 1 correspond to the experimental
results and curves 2, to the computation by the scheme elucidated above. An analogous correspondence between
the resulis is obtained also for the other initial parameters when the radius of the obstacle is on the order of
the radius of the central compression shock,

The position of the Mach disk can be determined by computation also by the method elucidated above,
Curves 3 in Fig. 12 correspond to the resuits of a computation of the body reaction by using computed values of
Xge

§7. If'theposition of the obstacle is suchthat there is no intersection of the curves 4 = 8, x) and ¢ = 8 (x)
(Xoh > X*op in Fig, 9), then the solution of the problem can be constructed theoretically: the position o% the
shock should hence correspond fo the greatest achievable distance from the obstacle and the two values g =
8, {xg) and ¢ = @2(xs) for the desired angle are the solution for such an xg, and can be treated as the appearance
og two contact discontinuities issuing from one point with a wedge stagnant region between them, behmd the
blfurc ation point of the fronts, This question merits more careful discussion,

If three generators of the shock fronts converge at one point, then the general conservation laws connect—
ing the gas parameters in the neighborhood of such a point will generally yield an overdefined system of rela-
tionships, To eliminate a possible contradiction, it becomes necessary to increase the arbitrariness in the
quantity of initial parameters, The assumption of the presence of a contact discontinuity issuing from the
branch point is simplest and sufficient, The next step in increasing the arbitrariness mentioned is assuming
the possibility of the appearance of two contact discontinuities, which form two opposite edges of an isobaric
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Fig, 13

domain filled with a gas in a relative rest state relative to the branch point of the shocks. Such a domain can
be called the wake of the triple point because of the explicit qualitative analogy with an aerodynamic wake be-
hind poorly streamlined bodies. : '

. Under stationary conditions the wake behind a triple point cannot originate, since even tangential stresses
of very small magnitude on its boundary cannot at all be equilibrated, and such a formation is severed from a
wave configuration in any real stream, rolls up into a vortex, and is entrained by the stream. However, the
resultant tangential stress on the wake boundary can be cancelled by the inertial forces during motion of a tri-
ple configuration with acceleration directed along the relative freestream velocity vector ahead of the branch
point, In this case the vortex-filled wake can exist and be developed because of making up the mass from the
exterior stream (Fig, 13), where the solid lines are the shock fronts, the dashes are the contact discontinuities,
v is the freestream velocity, and D is the rate of displacement of the branch point,

If all the waves have finite intensity, then the velocity head in a stream undergoing two-stage compres-
sion is many times greater than the velocity head behind a strong shock, This means that the role of the first
of the streams mentioned relative to the second approximates the effect of a solid wall. The boundary with
the high-pressure stream becomes almost rectilinear, and liberation of the volume for the developing wake oc-
curs principally because of deformation of the stream passing through an almost normal shock. Therefore,
the wake region has the form of a trough behind a cylindrical surface bounding the low-pressure flow domain,

Formation of the trough streamlined by a supersonic stream can be illustrated by the following simple
model problem: let the impinging stream be a two~layered flow of an ideal medium separated by a contact
discontinuity in the form of a horizontal plane, The velocity above this discontinuity is essentially supersonic,
while under the discontinuity the stream is low-pressure, subsonic. The body being streamlined exhibits a di-
hedral angle with an edge in the plane of the contact discontinuity, perpendicular to the direction of the free-
stream velocity, The streamlined angle can rotate freely around its edge and has faces of small extent in the
flow direction,

The force balance will evidently be such that the upper face of the angle, being subjected to the effect of
the high-pressure stream, is practically located in the plane of the contact discontinuity, perturbing the exterior
flow slightly, On the other hand, the lower face penetrates deeply into the low-pressure domain, producing a
developed separation flow because of deformation of the subsonic stream. A completely analogous effect occurs
behind the shock-wave branch point in the situation under consideration, Because of the impossibility of satis-
fying the conditions of the problem by using the scheme of three shocks with one contact discontinuity; two
contact discontinuities with a finite apex angle of the wedge domain between them originate (the analog of the
dihedral angle). At least the initial elements of the slip lines behave similarly to the faces of a light wedge, by
mainly deformingthe stream with relatively low velocity head, i.e., a free volume of the trough type is formed
on the surface of the cylinder bounding the subsonic flow,

The flow around such a tfough and its development occur under the dominating influence of the exterior
supersonic stream.,

The shock configuration in a jet becomes unstable upon the impact of the supersonic jet on an obstacle
in some sufficiently narrow range of escape parameters, the stationary flow goes spontaneously over into a
nonstationary flow, and a self-sustaining strongly fluctuating wave process originates in front of the face side
of the obstacle. It is now clear that the internal turbulent wake, which originates and decays periodically be-
hind the bifurcation line of the strong shock fronts, plays the major, probably governing, role in the mechanism
of this phenomenon., The application of the results of investigating this phenomenon to analyzing the pulsation
modes afforded the possibility of explaining and matching many facts which are experimentally observable,

The stream pulsations are acéompanied by significant displacements of the strong central shock along the
nonuniform background, whereupon intense entropy waves pass over the subsonic jet behind this shock,
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Several discrete vibrational tones, differing substantially in frequency, are usually observed. The low-
frequency pulsations can have a high amplitude and are of fundamental interest for investigations., The ampli-
tude of the high-frequency fluctuations is usually small, and estimates of the frequency show that these fluctu-
ations are associated with processes being propagated with the speed of sound,

An attempt has been made in [2] to construct a simplified mathematical model of this phenomenon on the
basis of a one~-dimensional description of the nonstationary wave processes under the assumption that the main
sampling of the mass in the wake region is concentrated in the tail part of the wake where a sharp change in the
stream geometry occurs. This latter circumstance permitted simulation of this phenomenon by a discontinuity
in the one-dimensional stream parameters with the inclusion of the area of the active section and the mass
discharge, Such a schematization of the flow can be used to describe the initial stage of wake formation, when
the dissipative mixing processes exert no essential influence on the dynamics of the phenomenon. At later
times, a model with a dominant isobaric mixing of the streams is more preferable.

The difficulty in solving problems as a whole is determined by two main reasons: inadequate study and
complexity of the quantitative description of the motion of a triple shock configuration with the formation of a
wake behind the bifurcation point and the complex spatial nature of the flow in the neighborhood of the obstacle,

The second reason plays a subordinate role in the problems considered and hence can be satisfied by an
approximate approach in the form of the simulating discontinuity considered above, for example,

The wake behind a triple point is that single element of a system which cannot, in principle, exist and be
developed under stationary real flow conditions and in this sense is the original cause for the passage to the
pulsating interaction mode,

Therefore, there is a foundation to assume that the domain of parameters in which there is no intersec-
tion between the curves ¢ = ®(x) and ¢ = @ (x) (see Fig, 9) is anonstationary interaction zone, From an analy-
sis of the obtained computational results there follows that the boundary of no stationary solution corresponds
(in the terminology of [9]) to the lower boundary of a zone of strong instability. Presented in Fig, 14 is a com-
parison of these boundaries in the case of jet inflow onto a flat infinite obstacle. The solid line is the boundary
of no solution to which xgp = x* , corresponds in Fig, 9, Although quantitative agreement is satisfactory just
for M, = 1, qualitative agreement holds in all regimes, Similar results have also been obtained for finite
obstacles (cylinders with a flat end face).

There is still no satisfactory mathematical model of the fluctuation cycle constructed on the basis of a
hypothesis of the periodic origination and decay of the wake behind a triple point.,
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ANALYSIS OF THE HYDRODYNAMIC INTERACTION BETWEEN
CASCADES OF THIN PROFILES TAKING ACCOUNT CF VORTEX
WAKE EVOLUTION

R, L, Kulyaev o UDC 532.582.2

The papers [1-5] are devoted to an investigation of aspects of the hydrodynamic interaction of
cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoreti~
cally in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evo-
lution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and
finite [4] density are computed; results of an experimental investigation of the dynamic reactions
of the flow on two mutually moving cascades of thin profiles are presented in [5], The interfer-
ence between two cascades of thin pi*ofiles in an inviscid, incompressible fluid flow is examined
in this paper, where a modified method from [6] is used.

§1. Undetached flowaround two cascades of thin profiles by an inviscid incompressible fluid is considered
in the plane of the x, y Cartesian coordinates, The y axis is directed along the front of the cascades. The
left cascade is assumed fixed, while the right cascade moves along the y axis at the velocity u = const. The flow
outside the profiles and their shed vortex wakes are assumed potential, the cascade spacings are identical, the
profiles are rigid, and the influence of the wake and profile thicknesses is negligible.

Under the assumptions made, the flow velocity V = (Vg, Vy) satisfies the equations

divV=0,r0t V=0, (x, y) & L; @.1)

the periodicity condition
V(‘Zy Yy +h’1 t) - V(xy U, t) (]_.2)

and the following boundary conditions:

nonpenetratipn of the fluid th'rough the profile of the cascades
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